Bactericidal Anti-Adhesion Potential Integrated Polyoxazoline/Silver Nanoparticle Composite Multilayer Film with pH Responsiveness

Author:

Bao Xiaojiong,Huang Xiaofei,Jin Xiaoqiang,Hu Qiaoling

Abstract

Bacterial infections occur frequently during the implantation of medical devices, and functional coating is one of the effective means to prevent and remove biofilms. In this study, three different hydrophilic polyoxazolines with carboxyl groups (aPOx: PT1, PT2 and PT3) and bactericidal silver nanoparticles (AgNPs) were synthesized successfully, and an aPOx-AgNP multilayer film was prepared by electrostatic layer-by-layer self-assembly. The effect of charge density and assembly solution concentration was explored, and the optimal self-assembly parameters were established (PT2 1 mg/mL and AgNPs 3 mg/mL). The hydrophilicity of the surface can be enhanced to resist protein adhesion if the outermost layer is aPOx, and AgNPs can be loaded to kill bacteria, thereby realizing the bactericidal anti-adhesion potential integration of the aPOx-AgNP multilayer film. In addition, the aPOx-AgNP multilayer film was found to have the characteristic of intelligent and efficient pH-responsive silver release, which is expected to be used as a targeted anti-biofilm surface of implantable medical devices.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3