Effect of the Particle Size and Layer Thickness of GNP Fillers on the Dielectric Properties and Actuated Strain of GNP–PDMS Composites

Author:

Seo Jin-SungORCID,Kim Do-Hyeon,Jung Heon-Seob,Kim Ho-Dong,Choi Jaewon,Kim Minjae,Baeck Sung-Hyeon,Shim Sang-Eun

Abstract

Dielectric elastomer actuators (DEAs), a type of electroactive polymers (EAPs), are smart materials that are used in various fields such as artificial muscles and biomimetic robots. In this study, graphene nanoplatelets (GNPs), which are conductive carbon fillers, were added to a widely used DEA, namely, polydimethylsiloxane (PDMS), to improve its low actuated strain. Four grades of GNPs were used: H5, H25, M5, and M25 (here, the number following the letter indicates the average particle size of the GNPs in μm). The average layer thickness of the H grade is 13–14 nm and that of the M grade is 5–7 nm. PDMS composites were prepared by adding 0.5, 1, 2, and 3 wt% of each GNP, following which the mechanical properties, dielectric properties, and actuated strain of the composites were measured. The mechanical properties were found to increase as the particle size increased. Regarding the dielectric characteristics, it was found that the higher the aspect ratio of the filler, the easier the formation of a micro-capacitor network in the composite—this led to an increase in the dielectric constant. In addition, the higher amounts of GNPs in the composites also led to an increase in the dielectric constant. For the actuated strain analysis, the electromechanical sensitivity was calculated using the ratio of the dielectric constant to the Young’s modulus, which is proportional to the strain. However, it was found that when the loss tangent was high, the performance of the actuated strain decreased owing to the conversion of electric energy into thermal energy and leakage current loss. As a result, the highest actuated strain was exhibited by the M25 composite, with an actuated strain value of 3.01% measured at a low electric field (<4 kV/mm). In conclusion, we proved that the GNP–PDMS composites with a thin layer and large particle size exhibited high deformation.

Funder

Hyundai Motor Company

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference48 articles.

1. A review of mechanically reconfigurable antennas using smart material actuators;Shahrzad;Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP),2011

2. Review of Smart Material Based Actuators for Artificial Muscles;Chad;Ph.D. Thesis,2007

3. Morphing aircraft based on smart materials and structures: A state-of-the-art review

4. Electroactive polymers for tissue regeneration: Developments and perspectives

5. Biomedical application of electroactive polymers in electrochemical sensors: A review;Damilola;Materials,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3