Abstract
With the first use of ETFE foils in building structures in the 1980s at the Burgers’ Zoo in Arnhem, Netherlands, the implementation of ETFE foils in roof and façade systems in large-span structures has become steadily more prominent. To safely design ETFE foil structures, their mechanical behaviour has to be fundamentally understood. Until now, several research studies have been published investigating this material’s behaviour. However, the parameters influencing these plastic’s mechanical behaviour, such as the strain rate or the test temperature, have only been investigated separately but not simultaneously. In this contribution, an analytical model is presented which describes the mechanical behaviour of ETFE foils under varying test temperatures and strain rates simultaneously. The material model has been checked against experimental results achieved for materials from three different international producers and two different commonly used foil thicknesses with significant differences in their mechanical responses (so that it can be assumed that the international market is represented). In the first step, uniaxial tensile tests on strip specimens were performed to describe the nonlinear and viscoelastic temperature- and strain rate-dependent material behaviour under uniaxial tension. The achieved stress-strain curves exhibited, as expected, the two commonly so-called yield points, which can be taken as separators for three different material stages: viscoelastic, viscoelastic-plastic, and viscoplastic. In the second step, by separating the uniaxial tensile response into these three stages, two interdependent functions could be derived based on the well-known Ramberg-Osgood material model to simulate the viscoelastic and viscoelastic-plastic material behaviour of ETFE foils. For this purpose, analytical functions were developed to calculate the model parameters considering the influence of the test temperature and the test speed. It can be shown that the newly developed analytical material model fits well with the experimental results. With the use of the derived nonlinear material model, design engineers can predict the material’s mechanical behaviour considering the environmental conditions on site while maintaining independence from the material’s supplier.
Funder
Deutsche Forschungsgemeinschaft
Subject
Polymers and Plastics,General Chemistry
Reference28 articles.
1. ETFE—Technologie und Entwurf;LeCuyer,2008
2. Buildings with ETFE foils: A review on material properties, architectural performance and structural behavior
3. Innovative Membranwerkstoffe, Biegeweiche Materialien: Eigenschaften und Verwendungsmöglichkeiten;Cremers;Dtsch. Ing.,2012
4. Das Mechanische Verhalten von Verbindungen Beschichteter Chemiefasern;Minte;Ph.D. Thesis,1981
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献