Predictive Shapes of Ellipsoid PPDL-PTHF Copolymer Particles Prepared by the Phantom Stretching Technique

Author:

Wischke ChristianORCID,Hofmann Dieter

Abstract

Ellipsoidal polymer particles can be prepared from spheres by unidirectional stretching at elevated temperatures, while the particles’ aspect ratios (AR) that result from this phantom stretching methodology are often not precisely predictable. Here, an elastic deformation model was exemplarily evaluated for ~50 µm spherical microparticles from PPDL-PTHF block copolymers. The prolate ellipsoidal particles, obtained by stretching in polyvinyl alcohol phantoms, differed in dimensions at identical relative phantoms elongations up to 150%, depending on the relative polymer composition and their systematically altered mechanical properties. Importantly, the resulting particle shapes within the studied range of AR up to ~4 matched the predictions of the elastic deformation model, which includes information of the elastic moduli of phantom and particle materials. These data suggest that the model may be applicable to predict the conditions needed to precisely prepare ellipsoids of desired AR and may be applicable to various deformable particle materials.

Funder

Helmholtz Association of German Research Centres

Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3