Comparative Study on Blast Damage Features of Reinforced Concrete Slabs with Polyurethane Sacrificial Cladding Based on Different Numerical Simulation Methods

Author:

Liu Zhidong,Zhao Xiaohua,Liu Da,Wang Gaohui,Shi Mingsheng

Abstract

The defense effects of sacrificial cladding have been extensively studied in the field of blast resistance. As a polymer material with a cellular structure, polyurethane also has the potential to act as sacrificial cladding due to its good mechanical properties. The purpose of this study is to compare and select a numerical simulation method that is suitable for exploring the blast damage mitigation effect of polyurethane sacrificial cladding on reinforced concrete slabs. To this end, three numerical models were developed using the Fully Coupled Eulerian–Lagrangian (CEL) method, the Arbitrary Lagrangian–Eulerian (ALE) coupling method, and the Smoothed Particle Hydrodynamics and Finite Element Method (SPH–FEM) coupling method, respectively. These three numerical models were used to investigate the damage features of reinforced concrete slabs with polyurethane sacrificial cladding (PU–RCS) under contact explosions. A field test was also carried out to provide a comparison for numerical simulation results. Moreover, the advantages and disadvantages of the three simulation results and the applicability of the three coupled models were discussed. The results show that compared with the CEL model and the ALE coupling model, the SPH–FEM coupling model can better simulate the damage features of PU–RCS, such as the cracks on the bottom surface of the RC slab and the large deformation failure state of polyurethane sacrificial cladding, while the CEL model and the ALE coupling model can simulate the propagation process of shock waves and have a lower computational cost. In conclusion, the SPH–FEM coupling method is the most applicable method for exploring the blast damage features of PU–RCS in this study.

Funder

National Natural Science Foundation of China

Foundation of Hubei Key Laboratory of Blasting Engineering

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3