Isothermal and Non-Isothermal Crystallization Kinetics of Poly(ethylene chlorotrifluoroethylene)

Author:

Yang Xiaodong,Yu BinORCID,Sun Hui,Wang Nan,Liu Peng,Feng Jiangli,Cui Xiaogang

Abstract

The isothermal (IT) and non-isothermal (NIT) crystallization kinetics, morphology, and structure of poly(ethylene chlorotrifluoroethylene) (ECTFE) were investigated via differential scanning calorimetry (DSC), polarized optical microscopy (POM), and wide-angle X-ray diffraction (XRD). The Avrami equation could well describe the overall IT crystallization process of ECTFE, and, furthermore, the overall crystallization rate decreased at higher crystallization temperatures (Tc). The equilibrium melting point for ECTFE was found to be 238.66 °C. The activation energies for IT and NIT crystallization were determined as −137.68 and −120.54 kJ/mol, respectively. The Jeziorny model fitted well with the initial stages of NIT melt crystallization, while deviations from linearity in the later stages of the process were due to the collisions of spherulites. Spherulites of ECTFE organized in a hexagonal crystal system were found. The relative crystalline degree of ECTFE under NIT conditions was about 54.55%, and this decreased with the increase in cooling rate. Moreover, the Ozawa and Mo models were suitable for modeling the overall NIT crystallization process of ECTFE.

Funder

Zhejiang Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3