Study of Carbon Matrix Composite as Wear-Resistant Plate Material on Improving Wear Resistance and Mixing Effect in Mixing Process

Author:

Pan Yiren,Chen Yihui,Pan Yi,Xue Junxiu,Han Wenwen,Bian Huiguang

Abstract

Silica and carbon black are the most important reinforcing systems in rubber formula. In the process of continuous optimization of the formula, silica gradually replaces carbon black by its characteristics. In view of the wear problem of the components of the mixer chamber caused by the increase in the proportion of silica in the formula, this research applied carbon matrix composite (CMC) materials to wear-resistant plate materials, and compared them with common wear-resistant (CWR) plate materials to explore the impact of replacing CWR plate with CMC on improving wear resistance and mixing effect. The results showed that compared with the CWR plate, CMC wear-resistant plate showed characteristics of a high friction coefficient and low wear rate (reduced by about 23%) in the mixing process of silica compound. However, the friction behavior of carbon black compound and carbon matrix composite wear-resistant plate showed an opposite trend, where the friction coefficient and wear rate increased simultaneously, especially the wear rate that increased by about 35%. The main reasons for the experimental results were related to the characteristics, elemental composition and surface morphology of carbon matrix composite, silica and carbon black. The experimental results also indicated that the carbon matrix composite wear-resistant plate is more suitable for a silica mixing process, and the increasing friction coefficient with decreasing wear rate of wear-resistant plate can further improve the importance of effective friction in mixing and prolonging the service life of wear-resistant plate.

Funder

Key Technology and Equipment for Intelligent Green Manufacturing of Rubber Prod-ucts

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference17 articles.

1. Synthesis and Application of Carbon Matrix Composites

2. Tribological tests of frictional carbon/carbon composite in braking mode

3. Advances in the ablation resistance of C/C composites

4. Analysis and improvement of main assembly and wear clearance of mixing chamber of F370 internal mixer;Zhang;Guangxi Light Ind.,2009

5. Analysis of main assembly and wear clearance of mixing chamber of F370 internal mixer;Wang;Rubber Plast. Technol. Equip.,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3