Abstract
Sandwich panel structures (SPSs) with lattice cores can considerably lower material consumption while simultaneously maintaining adequate mechanical properties. Compared with extruded lattice types, triply periodic minimal surface (TPMS) lattices have light weight but better controllable mechanical properties. In this study, the different types of TPMS lattices inside an SPS were analysed comprehensively. Each SPS comprised two face sheets and a core filled with 20×5×1 TPMS lattices. The types of TPMS lattices considered included the Schwarz primitive (SP), Scherk’s surface type 2 (S2), Schoen I-graph-wrapped package (I-WP), and Schoen face-centred cubic rhombic dodecahedron (F-RD). The finite element method was applied to determine the mechanical performance of different TPMS lattices at different relative densities inside the SPS under a three-point bending test, and the results were compared with the values calculated from analytical equations. The results showed a difference of less than 21% between the analytical and numerical results for the deformation. SP had the smallest deformation among the TPMS lattices, and F-RD can withstand the highest allowable load. Different failure modes were proposed to predict potential failure mechanisms. The results indicated that the mechanical performances of the TPMS lattices were mainly influenced by the lattice geometry and relative density.
Subject
Polymers and Plastics,General Chemistry
Reference41 articles.
1. Gesammelte Mathematische Abhandlungen;Schwarz,1890
2. Adhesive joining of Zerodur–CFRP–Zerodur sandwich structures for aerospace applications;De La Pierre;Macromol. Mater. Eng.,2020
3. The design of Sandwich panels with foam cores;Gibson,1988
4. Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications
5. Multifunctional Mechanical Metamaterials Based on Triply Periodic Minimal Surface Lattices
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献