Drug Delivery System Based on Carboxymethyl Cellulose Containing Metal-Organic Framework and Its Evaluation for Antibacterial Activity

Author:

Alsaaed Fatimah A. T.,El-Lateef Hany M. AbdORCID,Khalaf Mai M.ORCID,Mohamed Ibrahim M. A.ORCID,Al-Omair Mohammed A.,Gouda MohamedORCID

Abstract

A novel drug delivery system based on carboxymethyl cellulose containing copper oxide at melamine and zinc oxide at melamine framework (CMC-Cu-MEL and CMC-Zn-MEL) was prepared by the hydrothermal route. Synthesized nanocomposites were characterized by FTIR, SEM, and Raman spectroscopy. In addition, transmission electron microscopy (TEM) and selected area electron diffraction (SAED) images were applied to confirm the particle size and diffraction pattern of the prepared nanocomposites. Furthermore, the crystallinity of the synthesized CMC, CMC-Cu-MEL, and CMC-Zn-MEL materials was studied via X-ray diffraction (XRD). Estimating the transport exponent, which discloses the solvent diffusion and chain relaxation processes, and the Ritger–Peppas kinetic model theory were used to control the TC release mechanism from CMC-Cu-MEL and CMC-Zn-MEL. Additionally, the CMC-Cu-MEL and CMC-Zn-MEL containing TC had the highest activity index percents of 99 and 106% against S. aureus and 93 and 99% against E. coli, respectively. The tailored CMC-Cu-MEL and CMC-Zn-MEL for drug delivery systems are expected to be feasible and efficient.

Funder

King Faisal University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3