A Facile Fabrication of Lysosome-Targeting pH Fluorescent Nanosensor Based on PEGylated Polyester Block Copolymer

Author:

Wang Lijun1,Zhou Qiang2,Yang Haiyang2

Affiliation:

1. School of Materials Science and Engineering, Henan Joint International Research Laboratory of Nanocomposite Sensing Materials, Anyang Institute of Technology, Anyang 455000, China

2. CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China

Abstract

A novel lysosome-targeting PEGylated polyester-based fluorescent pH nanosensor is fabricated by the combination of ring-opening copolymerization (ROCOP), side-group modification and subsequent self-assembly. First, a key target amphiphilic copolymer carrier for rhodamine (Rh) pH indicator is synthesized in a facile manner by the ROCOP of phthalic anhydride with allyl glycidyl ether using mPEG-OH and t-BuP1/Et3B as the macroinitiator and binary catalyst, respectively. Subsequently, Rh moieties are covalently attached on the polymer chain with controllable grafting degree via an efficient thiol-ene click reaction. Concurrently, the effect of catalyst systems and reaction conditions on the catalytic copolymerization performance is presented, and the quantitative introduction of Rh is described in detail. Owing to its amphiphilic characteristics, the rhodamine-functionalized polyester-based block copolymer can self-assemble into micelles. With the covalent incorporation of Rh moieties, the as-formed micelles exhibit excellent absorption and fluorescence-responsive sensitivity and selectivity towards H+ in the presence of various metal cations. Moreover, the as-prepared micelles with favorable water dispersibility, good pH sensitivity and excellent biocompatibility also display appreciable cell-membrane permeability, staining ability and pH detection capability for lysosomes in living cells. This work provides a new strategy for the facile synthesis of novel biocompatible polymeric fluorescent pH nanosensors for the fluorescence imaging of lysosomal pH changes.

Funder

Science and Technology Project of Henan Province

National Science and Technology Major Project of the Ministry of Science and Technology of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3