Abstract
Poly(3-hexylthiophene) (P3HT) was systematically synthesized by chemical oxidative polymerization in chloroform with ferric chloride (FeCl3) as the oxidizing agent and various surfactants of the shape templates. The effects of 3HT: FeCl3 mole ratios, polymerization times, and surfactant types and concentrations on the electrical conductivity, particle shape and size were systematically investigated. Furthermore, dodecylbenzenesulfonic acid (DBSA), p-toluenesulfonic acid (PTSA), sodium dodecyl sulfate (SDS), and sodium dioctyl sulfosuccinate (AOT) were utilized as the surfactant templates. The P3HT synthesized with DBSA at 6 CMC, where CMC stands for the Critical Micelle Concentration of surfactant, provided a higher electrical conductivity than those with PTSA, SDS and AOT. The highest electrical conductivity of P3HT using DBSA was 16.21 ± 1.55 S cm−1 in which the P3HT particle shape was spherical with an average size of 1530 ± 227 nm. The thermal analysis indicated that the P3HT synthesized with the surfactants yielded higher stability and char yields than that of P3HT without. The P3HT_DBSA electrical conductivity was further enhanced by de-doping and doping with HClO4. At the 10:1 doping mole ratio, the electrical conductivity of dP3HT_DBSA increased by one order of magnitude relative to P3HT_DBSA prior to the de-doping. The highest electrical conductivity of dP3HT_DBSA obtained was 172 ± 5.21 S cm−1 which is the highest value relative to previously reported.
Funder
Conductive and Electroactive Polymers Research Unit of Chulalongkorn University
Subject
Polymers and Plastics,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献