Fully Coupled Three-Dimensional Simulation of Downward Flame Spread over Combustible Material

Author:

Snegirev A.ORCID,Kuznetsov E.,Korobeinichev O.,Shmakov A.,Paletsky A.,Shvartsberg V.,Trubachev S.ORCID

Abstract

Three-dimensional simulations of laminar flame propagating downwards the vertical surface of a rigid polyurethane slab heated by a radiative panel are presented and compared with the measurement data. The gas-phase model (ANSYS Fluent) allows for finite-rate volatile oxidation, soot formation and oxidation, emission, transfer, and absorption of thermal radiation. The solid-phase model Pyropolis considers heat transfer across the material layer and generation of combustible volatiles in thermal decomposition of the material. Kinetic model of material decomposition is derived to obey the microscale combustion calorimetry data for different heating rates. Transient behavior of propagating flame and pyrolysis zone, as well as spatial distributions of heat flux components, temperature, and mass burning rates over the specimen surface are examined. Variation of the thermal properties of the material during its thermal decomposition, as well as the specimen surface emissivity and reradiation are shown to be the important issues strongly affecting model predictions. Two distinct modes of counterflow flame spread, thermal and kinetic, are identified. In the thermal mode corresponding to fast chemistry in the gaseous flame, the flame propagation velocity is governed by the heating rate of the combustible material ahead of the flame front. Alternatively, in the kinetic mode, it is limited by the burning velocity of the volatile-air mixture forming ahead of the flame front. Simulation results are favorably compared with the measured propagation velocity.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3