Abstract
This study aims to increase the specific surface area of multi-walled carbon nanotubes (MWCNTs) by forming and subsequently removing various metal oxide nanoparticles on them. We used facile methods, such as forming the particles without using a vacuum or gas and removing these particles through simple acid treatment. The shapes of the composite structures on which the metal oxide particles were formed and the formation of multi-vacancy-defect MWCNTs were confirmed via transmission electron microscopy and scanning electron microscopy. The crystallinity of the formed metal oxide particles was confirmed using X-ray diffraction analysis. Through specific surface area analysis and Raman spectroscopy, the number of defects formed and the degree and tendency of defect-formation in each metal were determined. In all the cases where the metal oxide particles were removed, the specific surface area increased, and the metal inducing the highest specific surface area was determined.
Funder
National Research Foundation of Korea
Subject
Polymers and Plastics,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献