Optimization of Printing Parameters to Maximize the Mechanical Properties of 3D-Printed PETG-Based Parts

Author:

Valvez SaraORCID,Silva Abilio P.ORCID,Reis Paulo N. B.ORCID

Abstract

Fused filament fabrication (FFF) is the most popular additive manufacturing method, which allows the production of highly complex three-dimensional parts with minimal material waste. On the other hand, polyethylene terephthalate glycol (PETG) has been used to replace traditional polymers for 3D printing due to its chemical resistance and mechanical performance, among other benefits. However, when fibres are added, these PETG-based composites can be suitable for many different applications. Nevertheless, to guarantee their good performance in-service in these applications, and even extend to new ones, it is necessary for their mechanical properties to be maximized. Therefore, this study intends to optimize the printing parameters (nozzle temperature, printing speed, layer height and filling) in order to maximize the mechanical properties of printed PETG, PETG+CF (carbon fibre-reinforced PETG composites) and PETG+KF (aramid fibre-reinforced PETG composites). The Taguchi method was used for the experimental procedure design, and the specimens were produced according to the L16 orthogonal array. Finally, an analysis of variance (ANOVA) was performed, with a 95% confidence interval, to analyse the effect of the printing parameters on the bending properties. It was possible to conclude that the best bending properties for PETG, PETG+CF and PETG+KF were obtained for extrusion temperatures of 265 °C, 195 °C and 265 °C, printing speeds of 20, 60 and 20 mm/s, layer heights of 0.4, 0.53 and 0.35 mm and an infill density of 100% for the three materials, respectively.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3