Multifunctional Silica-Based Amphiphilic Block Copolymer Hybrid for Cu(II) and Sodium Oleate Adsorption in Beneficiation Wastewater

Author:

Qu Jia,Chang Liangliang,Liu Mingbao,Cao Baoyue,Li Meilan,Yang Qiang,Gong Wei

Abstract

Beneficiation wastewater contains various types of pollutants, such as heavy metal ions and organic pollutants. In this work, a silica-based amphiphilic block copolymer, SiO2–g–PBMA–b–PDMAEMA, was obtained by surface-initiated atom transfer radical polymerization (SI-ATRP) for Cu(II) and sodium oleate adsorption in beneficiation wastewater, using butyl methacrylate (BMA) as a hydrophobic monomer and 2-(dimethylamino)ethylmethacrylate (DMAEMA) as a hydrophilic monomer. FTIR, TGA, NMR, GPC, XRD, N2 adsorption–desorption isotherms and TEM were used to characterize the structure and morphology of the hybrid adsorbent. The introduction of PBMA greatly increased the adsorption of sodium oleate on SiO2–g–PBMA–b–PDMAEMA. Adsorption kinetics showed that the adsorption of Cu(II) or sodium oleate on SiO2–g–PBMA–b–PDMAEMA fitted the pseudo-second-order model well. Adsorption isotherms of Cu(II) on SiO2–g–PBMA–b–PDMAEMA were better described by the Langmuir adsorption isotherm model, and sodium oleate on SiO2–g–PBMA–b–PDMAEMA was better described by the Freundlich adsorption isotherm model. The maximum adsorption capacity of Cu(II) and sodium oleate calculated from Langmuir adsorption isotherm equation reached 448.43 mg·g−1 and 129.03 mg·g−1, respectively. Chelation and complexation were considered as the main driving forces of Cu(II) adsorption, and the van der Waals force as well as weak hydrogen bonds were considered the main driving forces of sodium oleate adsorption. The adsorbent was recyclable and showed excellent multicomponent adsorption for Cu(II) and sodium oleate in the mixed solution. SiO2–g–PBMA–b–PDMAEMA represents a satisfying adsorption material for the removal of heavy metal ions and organic pollutants in beneficiation wastewater.

Funder

the Promotion and Application of Foamed Concrete Preparation based on Vanadium Tailings

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3