The Aging Performance of PVDF in Acid Oil and Gas Medium

Author:

Qi GuoquanORCID,Yan Hongxia,Qi Dongtao,Li Houbu,Zhang Zhao

Abstract

In the process of transporting oil and gas, the service performance of thermoplastic pipes will decline due to the multiple influences of medium, temperature, and pressure. In order to study the service performance changes of PVDF pipes under oil and gas transportation conditions, the high-temperature autoclave is used to simulate the service state of the pipe in the mediums. The PVDF samples are exposed to simulated oil and gas mediums for 1 week, 3 weeks, 5 weeks, and 7 weeks under 60 °C and 90 °C conditions. After the exposure test, the physical and chemical properties of the PVDF pipe are tested and compared with the initial samples. Compared with the initial sample, the sample quality after the exposure test has a slight increase, with growth rates of 2% and 3% at 60 °C and 90 °C, respectively. Meanwhile, the tensile strength of the samples is about 13% and 21% lower than that of the initial sample, respectively. According to the microscopic morphology analyses, there are some crack defects on the surface of the sample after the exposure test. Through infrared analysis, it is shown that no molecular chain breakage, crosslinking, or other reactions are found after the exposure test. The above analysis shows that the PVDF sample has slight penetration and swelling during the exposure test. However, due to the large force between the PVDF molecules, its mechanical properties have a small downward trend, showing excellent environmental stress crack resistance.

Funder

the National Natural Science Foundation of China

Natural Science Basic Research Project of Shaanxi Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3