Self-Healable Covalently Adaptable Networks Based on Disulfide Exchange

Author:

Guo Xinru,Liu Feng,Lv Meng,Chen Fengbiao,Gao FeiORCID,Xiong Zhenhua,Chen Xuejiao,Shen Liang,Lin Faman,Gao Xuelang

Abstract

Introducing dynamic covalent bonding into thermoset polymers has received considerable attention because they can repair or recover when damaged, thereby minimizing waste and extending the service life of thermoset polymers. However, most of the yielded dynamic covalent bonds require an extra catalyst, high temperature and high-pressure conditions to trigger their self-healing properties. Herein, we report on a catalyst-free bis-dynamic covalent polymer network containing vinylogous urethane and disulfide bonds. It is revealed that the introduction of disulfide bonds significantly reduces the activation energy (reduced from 94 kJ/mol to 51 kJ/mol) of the polymer system for exchanging and promotes the self-healing efficiency (with a high efficiency of 86.92% after being heated at 100 °C for 20 h) of the material. More importantly, the mechanical properties of the healed materials are comparable to those of the initial ones due to the special bis-dynamic covalent polymer network. These results suggest that the bis-dynamic covalent polymer network made of disulfide and inter-vinyl ester bonds opens a new strategy for developing high-performance vitrimer polymers.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3