Measuring the Pores’ Structure in P3HT Organic Polymeric Semiconductor Films Using Interface Electrolyte/Organic Semiconductor Redox Injection Reactions and Bulk Space-Charge

Author:

Schauer FranzORCID

Abstract

The article is another in a series of follow-up articles on the new spectroscopic method Energy Resolved–Electrochemical Impedance Spectroscopy (ER-EIS) and presents a continuation of the effort to explain the method for electronic structure elucidation and its possibilities in the study of organic polymeric semiconductors. In addition to the detailed information on the electronic structure of the investigated organic semiconductor, the paper deals with three of the hitherto not solved aspects of the method, (1) the pores structure, which has been embedded in the evaluation framework of the ER-EIS method and shown, how the basic quantities of the pores structure, the volume density of the pores’ density coefficient β = (0.038 ± 0.002) nm−1 and the Brunauer-Emmet-Teller surface areas SABET SA == 34.5 m2g−1 may be found by the method, here for the archetypal poly(3-hexylthiophene-2,5-diyl) (P3HT) films. It is next shown, why the pore’s existence needs not to endanger the spectroscopic results of the ER-EIS method, and a proper way of the ER-EIS data evaluation is presented to avoid it. It is highlighted (2), how may the measurements of the pore structure contribute to the determination of the, for the method ER-EIS important, real rate constant of the overall Marcus’ D-A charge-transfer process for the poreless material and found its value kctD-A = (2.2 ± 0.6) × 10−25 cm4 s−1 for P3HT films examined. It is also independently attempted (3) to evaluate the range of kctD-A, based on the knowledge of the individual reaction rates in a chain of reactions, forming the whole D-A process, where the slowest one (organic semiconductor hopping transport) determines the tentative total result kctD-A ≅ 10−25 cm4 s−1. The effect of injection of high current densities by redox interface reactions in the bulk of OS with built-in pores structure may be very interesting for the design of new devices of organic electronics.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3