Comparative Study on the Spreading Behavior of Oil Droplets over Teflon Substrates in Different Media Environments

Author:

Wang Junchao,Cao Yijun,Li Guosheng

Abstract

This paper comparatively investigated the spreading process of an oil droplet on the surface of highly hydrophobic solid (Teflon) in air and water media using a high-speed imaging technology, and analyzed their differences in spreading behavior from the perspective of empirical relations and energy conservation. Furthermore, the classical HD and MKT wetting models were applied to describe the oil droplet spreading dynamics to reveal the spreading mechanism of oil droplets on the Teflon in different media environments. Results showed that the entire spreading process of oil droplets on Teflon in air could be separated into three stages: the early linear fast spreading stage following θ(t)=θ0+kt , the intermediate exponential slow spreading stage obeying θ(t)=bt−3α, and the late spreading stage described by θ(t)=θeq+a×exp(−t/T). However, the dynamics behavior of dynamic contact angle during the oil droplet spreading on Teflon in water could be well described by these expressions, θ(t)=θ0+kt and θ(t)=θeq+a×exp(−t/T). Clearly, a significant difference in the oil droplet spreading behavior in air and water media was found, and the absence of the intermediate exponential spreading stage in the oil–water–Teflon system could be attributed to the difference in the dissipated energy of the system because the dissipation energy in the oil–water–solid system included not only the viscous dissipation energy of the boundary layer of oil droplet, but also that of the surrounding water which was not included in the dissipation energy of the oil–air–solid system. Moreover, the quantitative analysis of wetting models suggested that the MKT model could reasonably describe the late spreading dynamics of oil droplets (low TPCL velocities), while the HD model may be more suitable for describing the oil droplet spreading dynamics at the early and intermediate spreading stages (high TPCL velocities).

Funder

National Nature Science Foundation of China

National Key R&D Program of China

Key R & D and popularized project in Henan Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3