Enhanced Simulation of Infrared Heating of Thermoplastic Composites Prior to Forming under Consideration of Anisotropic Thermal Conductivity and Deconsolidation by Means of Novel Physical Material Models

Author:

Längauer ManuelORCID,Zitzenbacher GernotORCID,Stadler Hannes,Hochenauer Christoph

Abstract

In recent years, thermoplastic composites have found their place in large business sectors and are in direct rivalry to thermoset matrix composites. In order to ensure efficient and lean processes, process modeling gains ever-growing attention. This work shows the computational fluid dynamics (CFD)-modeling of a typical heating step in a thermoforming process of a thermoplastic composite sheet. When heating thermoplastic composites, the heat conduction proceeds anisotropic, and the sheets are subject to thermal deconsolidation when heated above the melting temperature of the polymer matrix adding to the anisotropic effect. These effects are neglected in known process models and this study shows the first successful attempt at introducing them into CFD-modeling of the heating of thermoplastic composite sheets. Thus, the simulation requires temperature dependent values for the anisotropic thermal conductivity and the coefficient of linear thermal expansion, which are calculated with novel physical models which were developed solely for this cause. This alters the behavior of an isotropic CFD-model and allows the successful validation via laboratory experiments using glass fiber reinforced polypropylene (PP/GF) sheets with embedded thermocouples to check the internal temperature distribution when the sheet is heated to the designated forming temperature in a composite thermoforming press. The incorporation of this newly developed process model reduces the error in the core temperature prediction from close to 70 °C to 3 °C at the forming temperature.

Funder

Federal Government Upper Austria

European Union

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3