Enhancement of Mechanical and Bond Properties of Epoxy Adhesives Modified by SiO2 Nanoparticles with Active Groups

Author:

Long Jiejie,Li Chuanxi,Li YouORCID

Abstract

In order to improve the mechanical and bond properties of epoxy adhesives for their wide scope of applications, modified epoxy adhesives were produced in this study with SiO2 nanoparticles of 20 nm in size, including inactive groups, NH2 active groups, and C4H8 active groups. The mechanical properties of specimens were examined, and an investigation was conducted into the effects of epoxy adhesive modified by three kinds of SiO2 nanoparticles on the bond properties of carbon fiber reinforced polymer and steel (CFRP/steel) double lap joints. According to scanning electron microscopy (SEM), the distribution effect in epoxy adhesive of SiO2 nanoparticles modified by active groups was better than that of inactive groups. When the mass fraction of SiO2-C4H8 nanoparticles was 0.05%, the tensile strength, tensile modulus, elongation at break, bending strength, flexural modulus, and impact strength of the epoxy adhesives reached their maximum, which were 47.63%, 44.81%, 57.31%, 62.17%, 33.72%, 78.89%, and 68.86% higher than that of the EP, respectively, and 8.45%, 9.52%, 9.24%, 20.22%, 17.76%, 20.18%, and 12.65% higher than that of the inactive groups of SiO2 nanoparticles, respectively. The SiO2 nanoparticles modified with NH2 or C4H8 active groups were effective in improving the ultimate load-bearing capacity and bond properties of epoxy adhesives glued to CFRP/steel double lap joints, thus increasing the strain and interface shear stress peak value of the CFRP surface.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3