Efficient OLEDs Based on Slot-Die-Coated Multicomponent Emissive Layer

Author:

Witkowska EwelinaORCID,Glowacki IreneuszORCID,Ke Tung-Huei,Malinowski PawelORCID,Heremans Paul

Abstract

The optimization of multicomponent emissive layer (EML) deposition by slot-die coating for organic light-emitting diodes (OLEDs) is presented. In the investigated EMLs, the yellow-green iridium complex (Ir) was doped in two types of host: a commonly used mixture of poly(N-vinylcarbazole) (PVK) with oxadiazole derivative (PBD) or PVK with thermally activated delayed fluorescence-assisted dopant (10-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-10H-spiro[acridine-9,9′-fluorene], SpiroAC-TRZ). In this article, OLEDs with EML prepared in air by slot-die coating, facilitating industrial manufacturing, are confronted with those with spin-coated EML in nitrogen. OLEDs based on PVK:PBD + 2 wt.% Ir-dopant exhibit comparable performance: ~13 cd A−1, regardless of the used method. The highest current efficiency (21 cd A−1) is shown by OLEDs based on spin-coated PVK with 25 wt.% SpiroAC-TRZ and 2 wt.% Ir-dopant. It is three times higher than the efficiency of OLEDs with slot-die-coated EML in air. The performance reduction, connected with the adverse oxygen effect on the energy transfer from TADF to emitter molecules, is minimized by the rapid EML annealing in a nitrogen atmosphere. This post-treatment causes more than a doubling of the OLED efficiency, from 7 cd A−1 to over 15 cd A−1. Such an approach may be easily implemented in other printing techniques and result in a yield enhancement.

Funder

National Science Center

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference74 articles.

1. OLED Display Fundamentals and Applications;Tsujimura,2012

2. OLED Fundamentals Materials, Devices, and Processing of Organic Light-Emitting Diodes;Gaspar,2015

3. OLED Displays and Lighting;Koden,2017

4. OLED Manufacturing Equipment and Methods;Spindler,2017

5. Large-Area Organic Electronics: Inkjet Printing and Spray Coating Techniques;Jurchescu,2013

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3