Development of Novel S-Protective Thiolated-Based Mucoadhesive Tablets for Repaglinide: Pharmacokinetic Study

Author:

Alhakamy Nabil A.ORCID,Naveen Nimbagal Raghavendra,Gorityala Shashank,Kurakula MalleshORCID,Hosny Khaled M.,Safhi Awaji Y.ORCID,Bukhary Deena M.ORCID,Bukhary Haitham A.ORCID,Sabei Fahad Y.ORCID,Mushtaq Rayan Y.,Murshid Samar S.ORCID

Abstract

Mucoadhesive polymers have an essential role in drug localization and target-specific actions in oral delivery systems. The current work aims to develop and characterize a new mucoadhesive polysaccharide polymer (thiolated xanthan gum-TXG and S-Protected thiolated xanthan gum-STX) that was further utilized for the preparation of repaglinide mucoadhesive tablets. The thiolation of xanthan gum was carried out by ester formation through the reaction of the hydroxyl group of xanthan gum and the carboxyl group of thioglycolic acid. Synthesis of TXG was optimized using central composite design, and TXG prepared using 5.303 moles/L of TGA and 6.075 g/L of xanthan gum can accomplish the prerequisites of the optimized formulation. Consequently, TXG was further combined with aromatic 2-mercapto-nicotinic acid to synthesize STX. TXG and STX were further studied for Fourier-transform infrared spectroscopy, rheological investigations, and Ellman’s assay (to quantify the number of thiol/disulfide groups). A substantial rise in the viscosity of STX might be due to increased interactions of macromolecules liable for improving the mucosal adhesion strength of thiolated gum. STX was proven safe with the support of cytotoxic study data. Mucoadhesive formulations of repaglinide-containing STX showed the highest ex vivo mucoadhesion strength (12.78 g-RSX-1 and 17.57 g- RSX-2) and residence time (>16 h). The improved cross-linkage and cohesive nature of the matrix in the thiolated and S-protected thiolated formulations was responsible for the controlled release of repaglinide over 16 h. The pharmacokinetic study revealed the greater AUC (area under the curve) and long half-life with the RSX-2 formulation, confirming that formulations based on S-protected thiomers can be favorable drug systems for enhancing the bioavailability of low-solubility drugs.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3