Fabrication of Graphene-Modified Styrene–Acrylic Emulsion by In Situ Aqueous Polymerization

Author:

Li Yalin,Luo Jieling,Huang Baoquan,Jin HongjunORCID,Sun XiaoliORCID,Cao ChanglinORCID,Chen Qinghua,Qian QingrongORCID

Abstract

With the aim of developing green coatings, styrene–acrylic emulsion has been widely used in architectural coatings due to its excellent environmental protection and energy conservation. Nevertheless, the lack of water and oxygen resistance of water-based styrofoam coatings has promoted various nanomaterials being studied for modification. To improve the performance of waterborne styrofoam coating, we introduced the graphene nanopowder and expected to enable it with the function of electromagnetic interference (EMI) shielding to reduce the damage of electromagnetic radiation. In this paper, the problem of poor interface compatibility between graphene and polymer resin was successfully addressed by in situ polymerization. In the process of pre-polymerization of styrene–acrylic emulsion monomer, graphene-modified styrene–acrylic emulsion was obtained by introducing graphene aqueous dispersion. The results showed that the styrene–acrylic emulsion with 4 wt% aqueous graphene dispersions exhibited the best dispersion stability, improved water and oxygen resistance, and the conductivity reached 1.89 × 10−2 S/cm. Then, the graphene-modified coating for building was prepared by using graphene-modified styrofoam emulsion. All the performance indexes of the coating are in line with the industry standards, and it still showed benign EMI shielding effect even when the graphene content was low. It is demonstrated that in situ polymerization technology and the application of graphene in resin coatings modification will promote the development of green coatings.

Funder

the Program of Industry-Academic Research of Fujian Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3