Abstract
A solid-state polymer electrolyte membrane is formed by blending poly(vinylidene fluoride-co-hexafluoropropylene) with the synthesized copolymer of poly(methyl methacrylate-co-1-vinyl-3-butyl-imidazolium bis(trifluoromethanesulfonyl)imide, in which lithium bis(trifluoromethane)sulfonimide molecules are applied as the source of lithium ions. The accordingly formed membrane that contains 14 wt.% of P(MMA-co-VBIm-TFSI), 56 wt.% of PVDF-HFP, and 30 wt.% of LiTFSI manifests the best electrochemical properties, achieving an ionic conductivity of 1.11 × 10−4 S·cm−1 at 30 °C and 4.26 × 10−4 S·cm−1 at 80 °C, a Li-ion transference number of 0.36, and a wide electrochemical stability window of 4.7 V (vs. Li/Li+). The thus-assembled all-solid-state lithium-ion battery of LiFePO4/SPE/Li delivers a discharge specific capacity of 148 mAh·g−1 in the initial charge–discharge cycle at 0.1 C under 60 °C. The capacity retention of the cell is 95.2% after 50 cycles at 0.1 C and the Coulombic efficiency remains close to 100% during the cycling process.
Funder
National Natural Science Foundation of China
Subject
Polymers and Plastics,General Chemistry
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献