Abstract
Post-consumer waste recycling is a crucial issue for building a sustainable society. However, mechanical recycling of poly(lactic acid) (PLA) often reduces the performance of the recycled material because PLA has a strong tendency to degrade during reprocessing. Therefore, it is of great interest to develop an effective recycling method to improve the mechanical performance of this material. This paper presents a one-pot melt process for turning PLA waste into a biodegradable block copolymer and its high strength and ductility composite. The process was conducted in a melt-mixer through a transesterification of PLA with poly(ethylene glycol) (PEG) or poly(propylene glycol) (PPG) as a soft component and clay as reinforcement. Effects of soft component content and sequence of clay addition on the mechanical performance of the prepared materials were focused. The results showed the successful preparation of PLA-based multiblock copolymers of high molecular weights (~100 kDa). Both virgin PLA and recycled source could serve as the starting material. PEG was more efficient than PPG in providing an intense improvement of PLA ductility. The nanocomposite of intercalated structure yielded nearly 100 times higher elongation at break (Eb = 506%) than the starting PLA (Eb = 5.6%) with high strength of 39.5 MPa and modulus of 1.4 GPa, considering the advantages of clay addition. Furthermore, the products with a broadened range of properties can be designed based on the ratio of PLA and soft component, as well as the organization and spatial distribution of clay in the copolymer matrices.
Funder
National Research Council of Thailand
Subject
Polymers and Plastics,General Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献