Abstract
In this paper, a new type of polyurethane foam-filled bamboo composite tube is proposed. Axial compression tests were carried out on unfilled and polyurethane foam-filled bamboo composite tubes. The effects of the foam filler, diameter (50 and 100 mm) and number of winding layers (10, 15 and 20 layers) on the failure mode and energy absorption capacity of the tubes were studied. The test results showed that the failure mode of the unfilled tube was buckling failure, while that of the foam-filled tube was pressure-bearing failure, and the latter was more abrupt. The foam filler enhanced the stability of the wall of the unfilled tube. The interaction between them further increased the bearing capacity of the foam-filled tube and showed a higher platform load at a later stage. In terms of the absorbed energy, specific absorbed energy and average crush load, not all foam-filled tubes were superior to unfilled tubes. However, reducing the height of the bamboo composite tube and increasing the number of winding layers of the bamboo composite tube can effectively increase the positive effect of the foam filler on energy absorption.
Funder
National Natural Science Foundation of China
Key Research and Development Project of Jiangsu Province
Natural Science Foundation of Jiangsu Province
Six Talent Peaks Project of Jiangsu Province
Qinglan Project of Jiangsu Province
Subject
Polymers and Plastics,General Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献