The Influence of Flame Retardants on Combustion of Glass Fiber-Reinforced Epoxy Resin

Author:

Korobeinichev OlegORCID,Shaklein Artem,Trubachev StanislavORCID,Karpov AlexanderORCID,Paletsky Alexander,Chernov Anatoliy,Sosnin Egor,Shmakov Andrey

Abstract

For the first time, next to the flammability tests (LOI, UL-94 HB, VBB, TGA), experimental tests and computer simulation have been conducted on the flame spread and combustion of glass fiber-reinforced epoxy resins (GFRER) with 6% graphene and 6% DDM-DOPO flame-retardant additives. The downward rates of flame spread (ROS) in opposed flow with oxidizer and the upward ROS along GFRER composites have been first measured as well as the distribution of temperature over the combustion surface of the composites with flame-retardant additives and without them. The LOI and UL-94 HB tests showed a reduction in the flammability of GFRER when flame retardants were added and predicted a higher effectiveness of DDM-DOPO compared to graphene. Adding DDM-DOPO resulted in increasing the rate of formation of the volatile pyrolysis products and their yield, indicating, together with the other data obtained, the gas phase mechanism of the flame retardant’s action. Adding graphene resulted in an increase in the soot release on the burning surface and an increase in the amount of non-volatile pyrolysis products on the burning surface, reducing the amount of fuel that participated in the oxidation reactions in the gas phase. The developed numerical combustion model for GFRER with a DDM-DOPO additive, based on the action of DDM-DOPO as a flame retardant acting in the gas phase, satisfactorily predicts the effect of this flame retardant on the reduction in downward ROS over GFRER for 45–50% oxygen concentrations. The developed model for GFRER with graphene additive, based on a reduction in the amount of fuel and increase in the amount of incombustible volatile pyrolysis products when graphene is added, predicts with good accuracy downward ROS over GFRER depending on oxygen concentration.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3