Effects of Filler Functionalization on Filler-Embedded Natural Rubber/Ethylene-Propylene-Diene Monomer Composites

Author:

Lee Sung-Hun,Park Gun-Woo,Kim Hee-Jun,Chung Kyungho,Jang Keon-SooORCID

Abstract

Natural rubber (NR) presents a number of advantages over other types of rubber but has poor resistance to chemicals and aging. The incorporation of ethylene propylene diene monomer (EPDM) into the NR matrix may be able to address this issue. Mineral fillers, such as carbon black (CB) and silica are routinely incorporated into various elastomers owing to their low cost, enhanced processability, good functionality, and high resistance to chemicals and aging. Other fillers have been examined as potential alternatives to CB and silica. In this study, phlogopite was surface-modified using 10 phr of compatibilizers, such as aminopropyltriethoxysilane (A1S), aminoethylaminopropyltrimethoxysilane (A2S), or 3-glycidoxypropyltrimethoxysilane (ES), and mixed with NR/EPDM blends. The effects of untreated and surface-treated phlogopite on the mechanical properties of the rubber blend were then compared with those of common fillers (CB and silica) for rubbers. The incorporation of surface-modified phlogopite into NR/EPDM considerably enhanced various properties. The functionalization of the phlogopite surface using silane-based matters (amino- and epoxide-functionalized) led to excellent compatibility between the rubber matrix and phlogopite, thereby improving diverse properties of the elastomeric composites, with effects analogous to those of CB. The tensile strength and elongation at break of the phlogopite-embedded NR/EPDM composite were lower than those of the CB-incorporated NR/EPDM composite by 30% and 10%, respectively. Among the prepared samples, the ES-functionalized phlogopite showed the best compatibility with the rubber matrix, exhibiting a tensile strength and modulus of composites that were 35% and 18% higher, respectively, compared with those of the untreated phlogopite-incorporated NR/EPDM composite. The ES-functionalized phlogopite/NR/EPDM showed similar strength and higher modulus (by 18%) to the CB/NR/EPDM rubber composite, despite slightly lower elongation at break and toughness. The results of rebound resilience and compression set tests indicated that the elasticity of the surface-modified phlogopite/NR/EPDM rubber composite was higher than that of the silica- and CB-reinforced composites. These improvements could be attributed to enhancements in the physical and chemical interactions among the rubber matrix, stearic acid, and functionalized (compatibilized) phlogopite. Therefore, the functionalized phlogopite can be utilized in a wide range of applications for rubber compounding.

Funder

Industrial Strategic Technology Development Program

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3