Abstract
After more than 40 years of biopolymer development, the current research is still based on conventional laboratory techniques, which require a large number of experiments. Therefore, finding new research methods are required to accelerate and power the future of biopolymeric development. In this study, promising biopolymer–additive ranking was described using an integrated computer-aided molecular design platform. In this perspective, a set of 21 different additives with plant canola and soy proteins were initially examined by predicting the molecular interactions scores and mode of molecule interactions within the binding site using AutoDock Vina, Molecular Operating Environment (MOE), and Molecular Mechanics/Generalized Born Surface Area (MM-GBSA). The findings of the investigated additives highlighted differences in their binding energy, binding sites, pockets, types, and distance of bonds formed that play crucial roles in protein–additive interactions. Therefore, the molecular docking approach can be used to rank the optimal additive among a set of candidates by predicting their binding affinities. Furthermore, specific molecular-level insights behind protein–additives interactions were provided to explain the ranking results. The highlighted results can provide a set of guidelines for the design of high-performance polymeric materials at the molecular level. As a result, we suggest that the implementation of molecular modeling can serve as a fast and straightforward tool in protein-based bioplastics design, where the correct ranking of additives among sets of candidates is often emphasized. Moreover, these approaches may open new ways for the discovery of new additives and serve as a starting point for more in-depth investigations into this area.
Funder
Natural Sciences and Engineering Research Council
Subject
Polymers and Plastics,General Chemistry
Reference62 articles.
1. Statista, Annual Production of Plastics Worldwide from 1950 to 2020
https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/
2. Plastics, the environment and human health: current consensus and future trends
3. Degradation Rates of Plastics in the Environment
4. “Single-Use Plastics Prohibition Regulations—Overview,” 2022;Government of Canada
5. Recent advances in protein derived bionanocomposites for food packaging applications
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献