Carbon/Basalt Fibers Hybrid Composites: Hybrid Design and the Application in Automobile Engine Hood

Author:

Pu YongfengORCID,Liu Baichuan,Xue GuilianORCID,Liang Hongyu,Ma FangwuORCID,Yang Meng,Tian GuangdongORCID

Abstract

The low-velocity impact properties and the optimal hybrid ratio range for improving the property of hybrid composites are studied, and the application of hybrid composites in automobile engine hoods is discussed in this paper. The low-velocity impact properties of the hybrid composite material are simulated under different stacking sequences and hybrid ratios by finite element simulation, and the accuracy of the finite element model (FEM) is verified through experiments. Increasing the proportion of carbon fiber (CF) in the hybrid layer and placing the basalt fiber (BF) on the compression side can improve the energy absorption capacity under low-velocity impact loads. CF/BF hybrid composite hoods are optimized based on the steel hood and the low-velocity impact performance of the hybrid composite. The BCCC layer absorbs the most energy under low-velocity impact loads. Compared with CFRP, the energy absorbed under 10 J and 20 J impact energy is increased by 26.1% and 14.2%, respectively. Through the low-velocity impact properties of hybrid composites, we found that placing BF on the side of the load and keep the ratio below 50%, while increasing the proportion of CF in the hybrid laminate can significantly improve the property of the hybrid laminate. The results show that the stiffness and modal properties of the hybrid composite can meet the design index requirements, and the pedestrian protection capability of the hood will also increase with the increase in the proportion of BF.

Funder

Province Science and Technology Development Plan Project

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3