Performance Evaluation of CNT Reinforcement on Electroless Plating on Solid Free-Form-Fabricated PETG Specimens for Prosthetic Limb Application

Author:

Siddikali PalaiamORCID,Sreekanth P. S. RamaORCID

Abstract

The utility of polymers in the present decade is consistently increasing, giving scope to many applications from automobiles to prosthetics. Polymers used for solid free-form fabrication (SFFF), also known as 3D printing, comprise a quick fabrication process adopted by many industries to increase productivity and decrease the run time to cope with the market demands. In this research work, pure polyethylene terephthalate glycol (PETG) and multi-walled carbon nanotube (MWCNT)-PETG with an electroless metal layer coating and without a coating are discussed. The effect of the electroless metal layer coating on the reinforced PETG-MWCNT results in improved mechanical, tribological, and other surface properties. Pure PETG was incorporated with MWCNT nanofillers at 0.3 wt.% and extruded as a filament through a twin screw extruder with a 1.75 mm diameter and printed on ASTM standards. Tensile testing was performed on all four types of un-coated pure PETG, PETG-MWCNT, and metal-layer-coated PETG and PETG-MWCNT with a coating thickness of 26, 32, 54, and 88 μm. Dynamic mechanical analysis (DMA) showed that the coated PETG-MWCNT had the highest storage and loss modulus. The heat deflection temperature was improved to 88 °C for the coated PETG-MWCNT. The wear volume against the sliding distance at a load of 40, 50, and 60 N showed that the coefficient of friction decreased with an increase in the load. The scratch test results revealed the lowest penetration depth and lowest friction coefficient for the coated PETG-MWCNT sample. The water contact angle test showed that a greater coating thickness makes the sample surface more hydrophobic, and the microhardness test indicated that the indentation hardness value for the PETG-MWCNT was 92 HV. The study revealed that the metal-layer-coated PETG-MWCNT had better performance compared to the other specimens due to a good metal layer bonding on the PETG substrate. It was concluded that adding MWCNTs to a metal layer electroless coating improved the surface and mechanical properties of the PETG, and this may be suitable for many applications.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3