Abstract
Recently, Strontium oxide (SrO) nanoparticles (NPs) and hybrids outperformed older commercial catalysts in terms of catalytic performance. Herein, we present a microwave-assisted easy in situ solution casting approach for the manufacture of strontium oxide nanoparticles doped within a naturally occurring polymer, chitosan (CS), at varying weight percentages (2.5, 5, 10, 15, and 20 wt.% SrO/chitosan). To construct the new hybrid material as a thin film, the produced nanocomposite solutions were cast in petri dishes. The aim of the research was to synthesize these hybrid nanocomposites, characterize them, and evaluate their catalytic potential in a variety of organic processes. The strontium oxide-chitosan nanocomposites were characterized using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM) techniques. All the results confirmed the formation of chitosan–strontium oxide nanocomposite. FTIR spectrum of nanocomposite showed the presence of a characteristic peak of Sr-O bond. Furthermore, XRD revealed that SrO treatment increased the crystallinity of chitosan. The particle size was calculated using the Debye–Scherrer formula, and it was determined to be around 36 nm. The CS-SrO nanocomposite has been proven to be a highly efficient base promoter for the synthesis of 2-hydrazono [1,3,4]thiadiazole derivatives. To optimize the catalytic method, the reaction factors were investigated. The approach has various advantages, including higher reaction yields, shorter reaction durations, and milder reaction conditions, as well as the catalyst’s reusability for several applications.
Subject
Polymers and Plastics,General Chemistry
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献