One-Pot Synthesis of SnO2-rGO Nanocomposite for Enhanced Photocatalytic and Anticancer Activity

Author:

Alaizeri ZabnAllah M.,Alhadlaq Hisham A.ORCID,Aldawood SaadORCID,Akhtar Mohd JavedORCID,Ahamed MaqusoodORCID

Abstract

Metal oxide and graphene derivative-based nanocomposites (NCs) are attractive to the fields of environmental remediation, optics, and cancer therapy owing to their remarkable physicochemical characteristics. There is limited information on the environmental and biomedical applications of tin oxide-reduced graphene oxide nanocomposites (SnO2-rGO NCs). The goal of this work was to explore the photocatalytic activity and anticancer efficacy of SnO2-rGO NCs. Pure SnO2 NPs and SnO2-rGO NCs were prepared using the one-pot hydrothermal method. X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), UV–Vis spectrometry, photoluminescence (PL), and Raman scattering microscopy were applied to characterize the synthesized samples. The crystallite size of the SnO2 NPs slightly increased after rGO doping. TEM and SEM images show that the SnO2 NPs were tightly anchored onto the rGO sheets. The XPS and EDX data confirmed the chemical state and elemental composition of the SnO2-rGO NCs. Optical data suggest that the bandgap energy of the SnO2-rGO NCs was slightly lower than for the pure SnO2 NPs. In comparison to pure SnO2 NPs, the intensity of the PL spectra of the SnO2-rGO NCs was lower, indicating the decrement of the recombination rate of the surfaces charges (e−/h+) after rGO doping. Hence, the degradation efficiency of methylene blue (MB) dye by SnO2-rGO NCs (93%) was almost 2-fold higher than for pure SnO2 NPs (54%). The anticancer efficacy of SnO2-rGO NCs was also almost 1.5-fold higher against human liver cancer (HepG2) and human lung cancer (A549) cells compared to the SnO2 NPs. This study suggests a unique method to improve the photocatalytic activity and anticancer efficacy of SnO2 NPs by fusion with graphene derivatives.

Funder

King Saud University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3