Replica of Bionic Nepenthes Peristome-like and Anti-Fouling Structures for Self-Driving Water and Raman-Enhancing Detection

Author:

Lin Yen-Ting,Wu Chun-Hao,Syu Wei-Lin,Ho Po-Cheng,Tseng Zi-Ling,Yang Ming-ChienORCID,Lin Chin-Ching,Chen Cheng-ChenORCID,Chen Cheng-CheungORCID,Liu Ting-YuORCID

Abstract

The flexible, anti-fouling, and bionic surface-enhanced Raman scattering (SERS) biochip, which has a Nepenthes peristome-like structure, was fabricated by photolithography, replicated technology, and thermal evaporation. The pattern of the bionic Nepenthes peristome-like structure was fabricated by two layers of photolithography with SU-8 photoresist. The bionic structure was then replicated by polydimethylsiloxane (PDMS) and grafting the zwitterion polymers (2-methacryloyloxyethyl phosphorylcholine, MPC) by atmospheric plasma polymerization (PDMS-PMPC). The phospholipid monomer of MPC immobilization plays an important role; it can not only improve hydrophilicity, anti-fouling and anti-bacterial properties, and biocompatibility, but it also allows for self-driving and unidirectional water delivery. Ag nanofilms (5 nm) were deposited on a PDMS (PDMS-Ag) substrate by thermal evaporation for SERS detection. Characterizations of the bionic SERS chips were measured by a scanning electron microscope (SEM), optical microscope (OM), X-ray photoelectron spectrometer (XPS), Fourier-transform infrared spectroscopy (FTIR), and contact angle (CA) testing. The results show that the superior anti-fouling capability of proteins and bacteria (E. coli) was found on the PDMS-PMPC substrate. Furthermore, the one-way liquid transfer capability of the bionic SERS chip was successfully demonstrated, which provides for the ability to separate samples during the flow channel, and which was detected by Raman spectroscopy. The SERS intensity (adenine, 10−4 M) of PDMS-Ag with a bionic structure is ~4 times higher than PDMS-Ag without a bionic structure, due to the multi-reflection of the 3D bionic structure. The high-sensitivity bionic SERS substrate, with its self-driving water capability, has potential for biomolecule separation and detection.

Funder

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3