Study of the Structural Mechanical Properties of Drainage Canals Rehabilitated by Spraying Method

Author:

Zeng Cong,Gong Chenkun,Wang Fuzhi,Zhu Zihao,Zhao Yahong,Ariaratnam Samuel T.

Abstract

A large number of drainage pipes and canals in China have been in disrepair for a long time and there have been problems such as leakage and corrosion. In response to these problems, this paper studies a non-excavation technology for repairing the arched canal structure—the in-situ spraying method. To study the influence of the original canal structure on the mechanical characteristics of the lining structure by in-situ spraying and the restraint effect on the lining structure, a field model test with a similar ratio of 1:2 was conducted in the field test pit. By conducting four stages of three-point concentrated load loading tests, the mechanical characteristics of the lining structure were investigated to reveal the influence of the canal structure on the force of the lining structure. The test results show that: the maximum crack width of the newly added lining structure is 0.27 mm and the normal service ultimate bearing capacity of the arched structure repaired by H-70 reaches 150 kN; comparing the loading test and the numerical simulation results, the difference between the two vault displacement results is 4.65% and the results are relatively consistent. The displacement of the bottom of the lining structure is small and the participation of the bottom plate is small, while the displacement of the upper arch structure of the lining is significantly larger than the lateral displacement, indicating that the canal structure can effectively limit the lateral displacement of the newly added lining and that the canal structure is greatly reduced. The bending moment of the lining structure is improved and the restraint effect on the arch foot is more obvious. This paper proposes the use of H-70 to repair arched canal structures by the in-situ spraying method and seeks to prove the feasibility of this method and fill the gap of research in this area. This paper provides the structural design basis and experimental knowledge for the construction of the repair method, which has important practical significance for the pipeline repair project in the future.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference26 articles.

1. Statistical Yearbook of Urban Construction in 2022

2. Pipe Inner-repairing Technique Abroad and Development of CIPP Repairing Technology in our Country;Niu;Pipeline Tech. Equipment.,2003

3. Buckling Strength of a Thin-Wall Stainless Steel Liner Used to Rehabilitate Water Supply Pipelines

4. An updated structure for a stainless steel liner and the estimation of its buckling strength

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3