Temperature Responsive PBT Bicomponent Fibers for Dynamic Thermal Insulation

Author:

Khadse Ninad,Ruckdashel Rebecca,Macajoux Shnaidie,Sun Hongwei,Park Jay HoonORCID

Abstract

Thermoresponsive self-crimping polybutylene terephtlate (PBT)-based bicomponent fibers were fabricated by melt-spinning to serve as primary constituents for textiles, such as nonwoven battings, for an adaptive single insulting layer. Due to the intrinsically mismatching modulus and coefficient of thermal expansion (CTE), the fibers curl or straighten with temperature, similar to the concept of Timoshenko’s bimetallic strip. Maximizing the curvature is driven by an optimum of fiber diameter, overall CTE, and fiber moduli, which are all affected by drawing ratio and, consequently, fiber’s microstructure. A draw ratio of 2.33 yielded the best combination of mechanical and thermal properties; it was observed that increasing the draw ratio does not necessarily increase the self-crimping behavior. Tests performed on non-woven battings of these fibers exhibited comparable thermoreponsive behaviors to polypropylene-based thermoresponsive fibers from previous studies in the −20 °C to 20 °C temperature range, which has potential for wearable insulations for both commercial and defense sectors alike.

Funder

DEVCOM Soldier Center

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference23 articles.

1. Isothermal crystallization kinetics of commercially important polyalkylene terephthalates

2. How Team USA’s Self-Heating Olympic Jackets Work, and a List of the Design Firms That Helped to Create Them–Core77 https://www.core77.com/posts/73270/How-Team-USAs-Self-Heating-Olympic-Jackets-Work-and-a-List-of-the-Design-Firms-That-Helped-to-Create-Them#

3. Development of core–sheath structured smart nanofibers by coaxial electrospinning for thermo-regulated textiles

4. Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning

5. A smart hollow filament with thermal sensitive internal diameter

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3