Analysis of Melt Front Behavior of a Light Guiding Plate during the Filling Phase of Micro-Injection Molding

Author:

Lin Wei-ChunORCID,Fan Fang-YuORCID,Huang Chiung-Fang,Shen Yung-Kang,Wang Liping

Abstract

When the size of a liquid crystal display (LCD) increases, the light guiding plate (LGP) as the main part of the LCD must adopt a wedge-shaped plate to reduce its weight (the thickness of the LGP decreases because of this) and guide the light to the LCD screen. Micro-injection molding (MIM) is commonly used to manufacture LGPs. During the filling phase of MIM, the entire entering polymer melt front of the LGP should reach the end of the mold cavity at the same time. In this way, there will be no shrinkage or warpage of the LGP in its subsequent application, but it is difficult for the wedge-shaped LGP to meet these requirements. Therefore, the authors hoped to investigate MIM process parameters to change this situation. Otherwise, the LGP is easily deformed during the manufacturing process. Flow characteristics of LGPs were investigated during the filling phase of MIM in this study. Experimental and 3D numerical simulations were used to analyze the hysteresis, i.e., the advance of the polymer melt front of the LGP in MIM. Study results showed that a low injection speed caused a hysteresis effect of the plastic melt front, the solution was to increase the injection speed to improve the situation and an injection speed of 10 cm/s could achieve uniformity of the melt front in MIM. The research results showed that the filling situation of the LGP of MIM in the experiment was very close to that of the 3D numerical simulation.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference36 articles.

1. Micro-injection moulding- the aims of a project partnership;Kukla;Kunstst. Plast. Eur.,1998

2. Experimental investigation and numerical simulation of injection molding with micro-features

3. Application optimized compression induced solidification;Bűrkle;Kunstst. Plast. Eur.,1999

4. Experimental study of the transcription of minute width grooves by injection molding (II)

5. Implementation and analysis of polymeric microstructure replication by micro injection molding

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3