A New Process of Preparing Rice Straw-Reinforced LLDPE Composite

Author:

Xu Huicheng,Dun Mengyuan,Zhang Zhengqi,Zhang Lei,Shan Weidong,Wang Weihong

Abstract

To reduce the pollution resulting from discarding waste plastic film and burning straw, a new method of preparing straw-reinforced LLDPE composites was developed to utilize these wastes. The straws were first laid parallel on an LLDPE film and then rolled up. The rolls containing long straws were laid into a mat and then hot-pressed into a long straw composite board (the mass of straw accounted for 60%). Slope-cutting the straw, grinding the straw, and twisting the roll were designed to improve the physical and mechanical properties of long straw composites. Among them, slope-cutting the straw combined with twisting the roll provided the best properties. Compared to the extruded straw particle composite, the composite prepared with the new method improved the tensile strength, bending strength, impact strength, and water resistance by 358%, 151%, 416%, and 81%, respectively. Slope-cutting exposed more inner surface at the end of the straw. Scanning electron microscope observations showed that the straw inner surface was more tightly bonded with the LLDPE matrix than the outer surface. Meanwhile, the integrity of the straw was retained as much as possible, and thus greatly improved the performance of the resulting composites. Dynamic mechanical analysis, differential scanning calorimetry, and thermogravimetric analysis show that the viscous deformation of the composites prepared by the new method was reduced and the rigidity was increased, and the combination of straw and LLDPE forms a dense composite material with good interfacial bonding. It greatly slowed down the degree of its pyrolysis.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3