Polymer Composite-Based Materials with Photocatalytic Applications in Wastewater Organic Pollutant Removal: A Mini Review

Author:

Enesca Alexandru,Cazan CristinaORCID

Abstract

The development of new technologies using nanomaterials has allowed scientists to design advanced processes with many applications in environmental protection, energy production and storage, and medicinal bio-mediated processes. Due to their significant potential applications in different branches of science, the development of new polymer composites represents a priority, especially for nano-technological processes. Interest in polymeric composites was outlined by the synthesis of a large number of nano- or mezzo-scale materials with targeted functional properties for polymer matrix hybridization. The present mini review explores some of the most representative and recent papers reporting the photocatalytic activity of polymer composites toward different organic compounds (dyes, pharmaceutically active molecules, phenol, etc.). The polymer composites were divided based on their composition and photocatalytic activity. TiO2- and ZnO-based polymeric composites have been described here in light of their photocatalytic activity toward different pollutants, such as rhodamine B, phenol, or methyl orange. Polymeric composites based on WO3, Fe2O3, or Bi2MoO6 were also described. The influence of different polymeric composites and photocatalytic parameters (light spectra and intensity, pollutant molecule and concentration, irradiation time, and photocatalyst dosage) on the overall photocatalytic efficiency indicates that semiconductor (TiO2, ZnO, etc.) insertion in the polymeric matrix can tune the photocatalytic activity without compromising the structural integrity. Future perspectives and limitations are outlined considering the systematic and targeted description of the reported results. Adopting green route synthesis and application can add economic and scientific value to the knowledgebase by promoting technological development based on photocatalytic designs.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3