Author:
Feng Lei,Zhao Peng,Chen Tongdan,Jing Minghai
Abstract
The present research is carried out to inspect the influence of nano-OvPOSS (octavinyl oligomeric silsesquioxane) with different particle sizes on styrene-butadiene-styrene (SBS) modified asphalt through the method of molecular dynamics simulation. This nanomaterial is investigated for the first time to be used in asphalt modification. With the construction of modified asphalt simulation models and the analysis of their mixing energy, radius of gyration (Rg), radial distribution function (RDF), ratio of free volume (RFV), heat capacity, bulk modulus, and shear modulus, this study elucidates the influence of nano-OvPOSS on the compatibility between SBS and asphalt, on the structure of SBS as well as that of asphalt molecules and on the temperature stability and mechanical properties of SBS modified asphalt. The results show that nano-OvPOSS not only is compatible with SBS as well as with asphalt, but also is able to improve the compatibility between SBS and asphalt. Nano-OvPOSS is able to reinforce the tractility of branched chains of SBS and make SBS easier to wrap the surrounding asphalt molecules. The free movement space of molecules in the SBS modified asphalt system also shrinks. Moreover, the addition of nano-OvPOSS into SBS modified asphalt results in higher heat capacity, bulk modulus, and shear modulus of modified asphalt. All of these effects contribute to a more stable colloidal structure as well as more desirable temperature stability and deformation resistance of the modified asphalt system. The overall results of the study show that nano-OvPOSS can be used as a viable modifier to better the performance of conventional SBS modified asphalt.
Funder
Fundamental Research Funds for the Central Universities, CHD
Subject
Polymers and Plastics,General Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献