Self-Healability of Poly(Ethylene-co-Methacrylic Acid): Effect of Ionic Content and Neutralization

Author:

El Choufi Nadim,Mustapha Samir,Tehrani-Bagha Ali R.,Grady Brian P.

Abstract

Self-healing polymers such as poly(ethylene-co-methacrylic acid) ionomers (PEMAA) can heal themselves immediately after a projectile puncture which in turn lowers environmental pollution from replacement. In this study, the thermal-mechanical properties and self-healing response of a library of 15 PEMAA copolymers were studied to understand the effects of the ionic content (Li, Na, Zn, Mg) and neutralization percentage (13 to 78%) on the results. Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and tensile testing were used to study the thermo-mechanical properties of PEMAA copolymers while the self-healing response was studied using the projectile test. Puncture sites were observed using scanning electron microscopy (SEM) and the healing efficiency was quantitatively measured using the water leakage test. Five different self-healing responses were observed and correlated to ionic content and neutralization. At high neutralization, divalent neutralizing ions (Zn and Mg) that have stronger ionic interactions exhibited brittle responses during projectile testing. PEMAA samples neutralized with Mg and Li at low concentrations had a higher healing efficiency than PEMAA samples neutralized with Zn and Na at low neutralization. The PEMAA copolymers with higher tensile stress and two distinct peaks in the graph of loss factor versus temperature that indicate the presence of sufficient ionic aggregate clusters had improved healing efficiency. By increasing the neutralization percentage from 20% to 70%, the tensile strength and modulus of the samples increased and their self-healability generally increased. Among the investigated samples, the copolymer with ~50% neutralization by Li salt showed the highest healing efficiency (100%). Overall, the strength and elastic response required for successful self-healing responses in PEMAA copolymers are shown to be governed by the choice of ion and the amount of neutralization.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3