Development of Aloe Vera-Green Banana Saba-Curcumin Composite Film for Colorimetric Detection of Ferrum (II)

Author:

Vonnie Joseph MerillynORCID,Jing Ting Bong,Rovina KobunORCID,Erna Kana HusnaORCID,Felicia Wen Xia Ling,Nur ‘Aqilah Nasir Md,Abdul Wahab Roswanira

Abstract

This study was performed to develop and characterize a bio-film composed of Aloe vera (Aloe barbadensis), green banana Saba (Musa acuminata x balbisiana), and curcumin for the detection of Fe2+ ions. Cross-linking interaction between banana starch-aloe vera gel and banana starch-curcumin enhanced l the sensing performance of the composite film towards divalent metal ions of Fe2+. The morphological structure of the Aloe vera-banana starch-curcumin composite revealed a smooth and compact surface without cracks and some heterogeneity when observed under Scanning Electron Microscopy (SEM). The thickness, density, color property, opacity, biodegradation, moisture content, water-solubility, water absorption, swelling degree, and water vapor permeability of bio-films were measured. The incorporation of aloe vera gel and curcumin particles onto the banana starch film has successfully improved the film properties. The formation of the curcumin-ferrum (II) complex has triggered the film to transform color from yellow to greenish-brown after interaction with Fe2+ ions that exhibit an accuracy of 101.11% within a swift reaction time. Good linearity (R2 = 0.9845) of response on colorimetric analysis was also obtained in Fe2+ ions concentration that ranges from 0 to 100 ppm, with a limit of detection and quantification found at 27.84 ppm and 92.81 ppm, respectively. In this context, the film was highly selective towards Fe2+ ions because no changes of color occur through naked eye observation when films interact with other metal ions, including Fe3+, Pb2+, Ni2+, Cd2+, and Cu2+. Thus, these findings encourage curcumin-based starch films as sensing materials to detect Fe2+ ions in the field of food and agriculture.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3