Abstract
Fire-shaped nozzles can be used to study the deformability of microcapsules, particles, or cells traveling in a flow. Though their geometry depends on the dimensions of the original glass capillary and the heating conditions, they all produce a strain rate peak approximately at the section where the diameter is 1.5 times the minimum. The intensity of this peak and the time from its position to the neck can be easily estimated from the flow rate and three geometrical parameters, without the need for any simulation. In the convergent region of these nozzles, it is possible to observe the evolution of the deformation. It is necessary to use a sufficiently long nozzle to produce the maximum deformation before the neck.
Funder
Spanish Ministry of Science and Education
Subject
Polymers and Plastics,General Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献