Characteristics of Small-Molecule Migration of Silicone Rubber Insulator in Electrical Power Systems

Author:

Meng XiaoboORCID,Peng Gongmao,Niu Kang,Wang XiaogangORCID,Mei HongweiORCID,Wang LimingORCID

Abstract

The migration of low-molecular-weight components of polysiloxane (small molecules) to the surface of high-temperature-vulcanizing silicone rubber (HTV-SR) ensures its hydrophobicity and tends to coat the surface of pollutants, which would otherwise lower hydrophobicity. The transferability of hydrophobicity will ensure the insulator maintains its higher hydrophobicity after being coated with surface pollutants, thus providing the insulator with higher pollution flashover voltage. This migration process takes a certain time, and in this paper, the time characteristics of hydrophobicity transfer from HTV-SR coated with ten different inert materials were investigated. Ten different inert materials have different migration times and static contact angles, possibly due to the influence of pollution material characteristics on the characteristics of small-molecule migration. Thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FTIR), and gas chromatography–mass spectrometry (GC–MS) were used to analyze the migration of small molecules to the polluted surface. The evidence of small molecules migrating to the surface of the polluted material over time was found. Furthermore, the influence of pollution material characteristics on small-molecule migration was analyzed via SEM, specific surface area, and porosity. On that basis, the hydrophobicity migration characteristics of mixtures of kaolin and kieselguhr were also studied and compared to determine how best to simulate the behavior of natural pollution using artificial pollutants and their mixtures.

Funder

GuangDong Basic and Applied Basic Research Foundation

Guangzhou Science and Technology Plan Project

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3