Molecular Dynamics Simulations of the Interactions between a Hydrolyzed Polyacrylamide with the Face and Edge Surfaces of Molybdenite

Author:

Echeverry-Vargas LuverORCID,Estrada Darwin,Gutierrez LeopoldoORCID

Abstract

Process water used in mineral processing operations corresponds to water recovered from the thickeners and tailings dams, containing residual reagents such as hydrolyzed polyacrylamides (HPAMs). These polymers depress the flotation of different minerals, and their effect on molybdenite has been experimentally demonstrated. The objective of this work was to study the interactions between a segment of a HPAM with the face and edge of molybdenite. The sigma profile, the radial distribution functions of the HPAM, and the orientation and atomic density profiles of water molecules on the face and edge surfaces of molybdenite were calculated. The results obtained from molecular dynamics simulations showed that the interactions between the HPAM and molybdenite are mainly explained by the interactions of the amide group with the faces and edges of the mineral. Molecular dynamics simulations also showed that the HPAM molecule rearranges in such a way that the amide group moves towards the molybdenite face or edge, and the carboxylate group moves away from the mineral surface. The results obtained in the simulations showed that the interactions of the HPAM with the molybdenite edge are slightly stronger than the interaction of this molecule with the mineral face. Simulations demonstrated that the presence of the sodium and hydroxide ions reduces the concentration of HPAM around the face and edge surfaces, which is expected to affect HPAM adsorption on molybdenite. The conclusions obtained through molecular dynamics simulations are in line with the results obtained in previous studies carried out at a macroscopic scale, which reported that HPAMs adsorb onto molybdenite particles and reduce their hydrophobicity.

Funder

Agencia Nacional de Investigación y Desarrollo

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3