Improvement on Thermostability of Pectate Lyase and Its Potential Application to Ramie Degumming

Author:

Xu Huan,Feng Xiangyuan,Yang Qi,Zheng Ke,Yi Le,Duan Shengwen,Cheng LifengORCID

Abstract

In order to obtain a thermostable pectate lyase for ramie degumming, a rational design based on structural analysis was carried out on a novel pectate lyase (Pel419) derived from the Dickeya Dadantii DCE-01 for high-efficiency ramie degumming. A total of five potential amino acid sites were chosen to replace residues. Then, the mutant enzymes were subjected to the heterologous expressions in Escherichia coli and their enzymatic characteristics were determined. The optimal reaction temperature for the five mutants kept consistent with that for the wild type. The enzyme activity and thermal stability of mutant V52A were significantly improved. Meanwhile, the weight loss rate obtained by V52A with the best enzymatic characteristics in the ramie degumming process at 50 °C is comparable with that obtained by commercial cotton-ramie processing pectinases, indicating that V52A was a potential industrial enzyme that could be applied to large-scale ramie degumming. In this study, the biological functions of conservative residues of Pel419 were preliminarily explored. The mutant V52A with both enzymatic activity and improved heat resistance was acquired, providing a superior material for developing enzyme preparations of ramie degumming, and rendering an effective method for the rational design aiming to improve the thermostability of pectate lyase.

Funder

Yuelu Youth Funds of IBFC

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3