The Effect of Physical Aging and Degradation on the Re-Use of Polyamide 12 in Powder Bed Fusion

Author:

Sanders BenjaminORCID,Cant Edward,Amel Hoda,Jenkins MichaelORCID

Abstract

Powder bed fusion (PBF) is an additive manufacturing (AM) technique which offers efficient part-production, light-weighting, and the ability to create complex geometries. However, during a build cycle, multiple aging and degradation processes occur which may affect the reusability of the Polyamide 12 (PA-12) powder. Limited understanding of these phenomena can result in discarding re-usable powder unnecessarily, or the production of parts with insufficient properties, both of which lead to significant amounts of waste. This paper examines the thermal, chemical, and mechanical characteristics of PA-12 via an oven storage experiment that simulates multi jet fusion (MJF) conditions. Changes in the properties of PA-12 powder during oven storage showed two separate, time-dependent trends. Initially, differential scanning calorimetry showed a 4.2 °C increase in melting temperature (Tm) and a rise in crystallinity (Xc). This suggests that secondary crystallisation is occurring instead of, or in addition to, the more commonly reported further polycondensation process. However, with extended storage time, there were substantial reductions in Tm and Xc, whilst an 11.6 °C decrease in crystallisation temperature was observed. Fourier transform infrared spectroscopy, a technique rarely used in PBF literature, shows an increased presence of imide bonds—a key marker of thermo-oxidative degradation. Discolouration of samples, an 81% reduction in strength and severe material embrittlement provided further evidence that thermo-oxidative degradation becomes the dominant process following extended storage times beyond 100 h. An additional pre-drying experiment showed how moisture present within PA-12 can also accelerate degradation via hydrolysis.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3