Sensitive Non-Enzymatic Glucose Electrochemical Sensor Based on Electrochemically Synthesized PANI/Bimetallic Oxide Composite

Author:

Khan AnishORCID,Khan Aftab Aslam ParwazORCID,Marwani Hadi M.,Alotaibi Maha Moteb,Asiri Abdullah M.ORCID,Manikandan AyyarORCID,Siengchin SuchartORCID,Rangappa Sanjay MavinkereORCID

Abstract

The development of a sensitive glucose monitoring system is highly important to protect human lives as high blood-glucose level-related diseases continue to rise globally. In this study, a glucose sensor based on polyaniline-bimetallic oxide (PANI-MnBaO2) was reported. PANI-MnBaO2 was electrochemically synthesized on the glassy carbon electrode (GCE) surface. The as-prepared PANI-MnBaO2 was characterized by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Glucose sensing on PANI-MnBaO2 is based on the electrocatalytic oxidation of glucose to the glucolactone, which gives oxidation current. The oxidation potential for glucose was 0.83 V, with a limit of detection of 0.06 µM in the linear and in the concentration range of 0.05 µM–1.6 mM. The generated current densities displayed excellent stability in terms of repeatability and reproducibility with fast response. The development of a sensitive glucose sensor as obtained in the current study would ensure human health safety and protection through timely and accurate glucose detection and monitoring.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3