Percolation Network Formation in Nylon 6/Montmorillonite Nanocomposites: A Critical Structural Insight and the Impact on Solidification Process and Mechanical Behavior

Author:

Yan TingziORCID,Chen Depei,Zhao BaijinORCID,Jiang Xiaodong,Wang Lian,Li Yongjin

Abstract

The incorporation of montmorillonite (MMT) into Nylon 6 can endow advantages like improved mechanical strength and thermal stability, making Nylon 6/MMT a possible ideal alternative for Nylon 66. However, the relationship between the microstructure and physical properties of nylon 6/MMT nanocomposites is unclear so far due to the complicated system, including the highly asymmetric geometry of the exfoliated MMT layer and the complicated interaction between MMT layers and entangled nylon 6 chains. Herein, we focus on two processes, namely the impact of MMT on the solidification procedure during molding and the toughness–brittleness transition during the tensile stretch, in order to elucidate the structure–property relationship of nylon 6/MMT composites. We firstly studied the solidification process of nylon 6/MMT with bending height experiments. The results showed that the solidification process occurs prior to the crystallization of nylon 6, indicating that a physical crosslinked network rather than a crystalline structure is the reason for the solidification process. Furthermore, the solidification speed has a step change at around 2 wt% MMT content, indicating that the MMT percolation network is related to the transition. We further studied the influence of MMT inclusion on the mechanical properties, and found the tensile strain at break showed a similar step change at around 2 wt% MMT content, which further confirms the existence of an MMT percolation network above 2 wt% MMT content. It was generally believed that the main effect of MMT on nylon 6 is the nanofiller enforcement; we found that the percolation effect of the highly asymmetric 2-D nanofiller plays a central role in influencing the mechanical properties and solidification behavior during molding.

Funder

National Natural Science Foundation of China

Zhejiang Natural Science foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3